Worked Example - NIOSH Shiny App

For this demo walk through, we will give a tour of the app with screenshots in a step-by-step fashion to demonstrate of usage of the Shiny app, using an available .csv file containing empirical data from 31 chemicals.

Dataset

Please pay special attention to the format of the variables and make sure you input data, e.g. unit in the same way, and do not include extra space.

,	AutoSave 💽 🕂 🏳 🗸 🖓 🤝 🤜 🗸 NIOSH Data 🗸								
Fi	le Hon	ne Inser	t Draw	Page L	ayout F	ormulas	Data	Review	Vie
ľ	Calibri - 11 - A^ A = = = \gg - $\stackrel{ab}{\sim}$ Wrap Text								
Pa	ste [∟] ∽ 🗳	<u>В I Ц</u>	<u> </u>	🔗 ~ 🗚	• = = =	≡ = €=	<u>→</u> = 🖽 Me	erge & Cente	er
CI	ipboard 🗔		Font		ы		Alignment		
A		: ×		🕼 Chen	nical				
	А	В	с	D	E	F	G	н	
1	Chemical	Species	Reference	LC50	LC50_Unit	Time	Time_Unit	.s	
2	Ammonia	Rat	Alarie 1981	40300	ppm	10	min		
3	Ammonia	Rat	Alarie 1981	28595	ppm	20	min		
4	Ammonia	Rat	Alarie 1981	20300	ppm	40	min		
5	Ammonia	Rat	Alarie 1981	11590	ppm	1	hr		
6	Ammonia	Rat	Back et al.	7338	ppm	1	hr		
7	Ammonia	Mouse	Back et al.	4837	ppm	1	hr		
8	Ammonia	Rabbit	Boyd et al.	9859	ppm	1	hr		
9	Ammonia	Cat	Boyd et al.	9859	ppm	1	hr		
10	Ammonia	Rat	Deichman	2000	ppm	4	hr		
11	Ammonia	Mouse	Kapeghian	4230	ppm	1	hr		
12	Acetaldeh	Rat	Appelman	13000	ppm	4	hr		
13	Acetaldeh	Hamster	Feron 1979	17000	ppm	4	hr		
14	Acetaldeh	Rat	Skog 1950	20000	ppm	30	min		
15	Acetaldeh	Rat	Skog 1950	20536	ppm	30	min		
16	Acrolein	Mouse	Albin 1962	875	ppm	1	min		
	NIOSH Data								

1. Home Tab

Before using the app, please carefully read the instructions listed in the Home Tab, as shown in the Figure 1. below.

Ten Berg	e Exponent C	alculator			
HOME FILE INP	UT DATA VISUALIZATION	REGRESSION VISUALIZATION	REGRESSION MODEL RESULTS	MIXED EFFECTS MODEL RESULTS	METHODOLOGY
STRUCTIONS:					
. Download the ten ile Input' page. A ta	nplate table from the link be able will be displayed. Pleas	low as a .csv file, input the da e thoroughly read through the	ta for the desired chemical(s), table to ensure you have ente	save locally, and then upload the red the data correctly.	file at the top of the
ink to Template					
lease refer to 'Wor	ked Example' for correct va	riable input format.(e.g.'hr' fo	r unit in hours)		
orked Example					
. The 'Data Visualiz ave its own set of (ation' tab will produce scat graphs (if data for different	ter plots of the log(Concentral species is available.	tion) vs. log(time) for the chen	nical(s)selected at the top of the	page.Each chemical wi
. The 'Regression \ he scatter plot will	'isualization' tab will produc include the regression line	e scatter plots only for chemi along with a visualization of t	cals which pass filtering (have ne uncertainty surrounding the	at least 3 unique time observation regression estimation.	ons with one species).
I. The 'Regression M hemical-species co	Model Results' tab will inclue ombination.	de a table and a graphical disp	olay of the estimates with Baye	esian Credible intervals for the ex	ponent, n, for each
i. The 'Mixed Effect of observations con ab.	s Model Results' tab will inc ning from the same study (t	lude results of a mixed effect he Reference). This will only n	s model which includes a rand nake sense to interpret in spec	om effect to account for correlat ific scenarios which are outlined	ion between outcomes in the 'Methodology'
OR FIRST TIME US	ER:				
Refer to the 'Worked	Example' link above to see	a walk-through of the app usa	age for a real example dataset		
OR MORE INFORM	ATION:				
Refer to the 'Method	lology' tab for more informa	ition on methodology used an	d references.		
		Figure	1 Homo Tab		
		Figure	I. HUIIIe Tab		

2. File Input Tab

Once the .csv file containing the raw data is ready, please click the "File Input" tab and "browse" to locate the .csv file and upload it; once uploaded, the raw data will be displayed as shown in Figure 2.

Ten Berge Exponent Calculator

	0								
HOME	FILE INPUT	DATA VISUALIZATION	REGRESSION VISUALIZA	TION	REGRESSION MODEL RESU	ILTS MIXED EFFE	CTS MODEL RESULTS	METHODOLOGY	
Please	upload csv. dat	ta file here:							
BROW	SE NIOSH	H Data.csv							
	Upload	d complete							
Show	25 🔻 entrie	es					Search:		
Chen	nical 🔶	Species 🔶	Reference \$	LCS	i0	0_Unit ∲ ·	Fime 🔶	Time_Units	÷
Ammo	nia	Rat	Alarie 1981	4030	0 ppm	10)	min	
Ammo	nia	Rat	Alarie 1981	2859	5 ppm	20)	min	
Ammo	nia	Rat	Alarie 1981	2030	0 ppm	40)	min	
Ammo	nia	Rat	Alarie 1981	1159	0 ppm	1		hr	
Ammo	nia	Rat	Back et al. 1972	7338	ppm	1		hr	
Ammo	nia	Mouse	Back et al. 1972	4837	ppm	1		hr	
Ammo	nia	Rabbit	Boyd et al. 1944	9859	ppm	1		hr	
Ammo	nia	Cat	Boyd et al. 1944	9859	ppm	1		hr	
Ammo	nia	Rat	Deichmann and Gerarde 1969	2000	ppm	4		hr	

Figure 2. File Input Tab

3. Data Visualization Tab

In this tab, click and select the chemicals of interest, if data for multiple species are available, multiple plots will be displayed in side-by-side scatterplots of log-transformed LC_{50} and exposure time, as shown in Figure 3. below. Points are color-coded by difference source of references. Selected chemicals can be removed from the visualization by simply removing them from the selection window.

Ten Berge Exponent Calculator DATA VISUALIZATION REGRESSION VISUALIZATION FILE INPUT REGRESSION MODEL RESULTS MIXED EFFECTS MODEL RESULTS METHODOLOGY HOME Please select the chemical(s) here: Acrolein Ammonia Pentaborane Scattorplot of log(LC50) over log(Time) by Chemical & Species Color-Coded by different Source of References Acrolein - Dog Acrolein - Ha olein - Rat 7.5 21 Reference ia - Cat ia - Mense a - Rat Alarie 1981 Albin 1962 10. Back et al. 1972 Boyd et al. 1944 log_LC50 (ppm) Carpenter et al. 1949 Catilina et al. 1966 Deichmann and Gerarde 1969 Jacobson 1958 Kapeghian et al. 1982 Kruysse 1971 Levinskas et al. 1958 Skog 1950 Weeks et al. 1964 ane - Dog Pent ٠ Weir et al. 1964 log Time (minutes)

Figure 3. Data Visualization Tab

4. Regression Visualization Tab

Figure 4. displays the scatterplot of filtered log transformed LC_{50} and their according exposure time points, along with regression lines and additional standard error bands. In this demo, three chemicals are chosen; note that for "Pentaborane", enough data for two species (Mouse and Rat) are available, so two regression plots are drawn separately. In this plot, sources of studies are also color-coded.

Ten Berge Exponent Calculator

	-	-					
HOME	FILE INPUT	DATA VISUALIZATION	REGRESSION VISUALIZATION	REGRESSION MODEL RESULTS	MIXED EFFECTS MODEL RESULTS	METHODOLOGY	
Please sel	lect the chemi	cal(s) here:					
Acrolein	Ammonia P	entaborane					

Note that in this tab, only chemical(s) that have at least 3 observations from different time points for one species can be used to fit the regression model. If no visualization is displayed in this tab, please carefully check the data to make sure minimal requirement is met.

log(LC50) over log(Time) by Chemical & Species with Fitted Regression Line

5. Regression Model Results Tab

In Figure 5., a visualization of the ten Berge exponents is provided, in which the ten Berge exponent number n and its credible interval is displayed in vertical bars, with an additional indication that allows for identification of ten Berge exponents that fall out of the normal range (0.85 to 3.5). The lower section of the tab has the resulting table for the chemical-specific ten Berge n, as well as the lower and higher bounds of the estimated Credible Intervals for different chemicals using the Bayesian method.

Ten Berge Exponent Calculator

Note that in this tab, only chemical(s) that have at least 3 observations from different time points for one species can be used to fit the regression model. If no visualization is displayed in this tab, please carefully check the data to make sure minimal requirement is met.

Ammonia - Rat	1.13	0.83	1.58
Carbon disulfide - Rat	1.03	0.71	1.61
Carbon monoxide - Rat	1.46	0.81	2.41
Epichlorohydrin - Rat	1.01	0.75	1.51
Ethyleneimine - Rat	1.31	0.75	2.53
Hydrogen cyanide - Rat	1.73	0.98	2.88
Pentaborane - Mouse	1.51	1.24	1.80
Pentaborane - Rat	1.51	1.06	2 13

Figure 5. Regression Model Results Tab

6. Mixed Effects Model Results Tab

Similar to the previous tab for regression results, the Mixed Effects Model Results tab displays similar information, but the calculation scheme behind the results is from mixed effects models. Note that this method has a different data filtering criterion; therefore, the chemicals available for selecting in this tab may be different from those in the Regression Results Tab.

In this tab, the bootstrapping method described in the report of the Mixed Effects Model research group are used to obtain the confidence intervals.

Ten Berge Exponent Calculator

	-						
HOME	FILE INPUT	DATA VISUALIZATION	REGRESSION VISUALIZATION	REGRESSION MODEL RESULTS	MIXED EFFECTS MODEL RESULTS	METHODOLOGY	
Please se	elect the chemi	ical(s) here:					
Ammor	nia Carbon dis	ulfide					
Carbon	monoxide Epi	ichlorohydrin					
Hydrog	en cyanide Pe	ntaborane					

Note that in this tab, only chemical(s) that fits the following requirements can be used to fit the mixed effects model: (1) at least 3 observations from different time point, (2) among which at least two observations are from the same study/reference, (3) the above-mentioned observations are for the same species. If no visualization is displayed in this tab, please carefully check the data to make sure minimal requirement is met.

Ton Dougo Evnonont Con	fidonco Intorvolo	by Chamical	P. Spacioc
	nuence intervais	DV CHEIIICA	a species

Chemical	n	CI_Lower_Bound	CI_Upper_Bound
Ammonia - Rat	1.40	1.06	1.99
Carbon disulfide - Rat	0.87	0.78	1.06
Carbon monoxide - Rat	1.59	1.11	3.00
Epichlorohydrin - Rat	0.86	0.74	1.03
Hydrogen cyanide - Rat	1.74	1.08	4.39
Pentaborane - Mouse	1.34	1.22	1.50
Pentaborane - Rat	1.29	1 14	1.47

Figure 6. Mixed Effects Model Results Tab

The End.