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EXECUTIVE SUMMARY 

High concentrations of dangerous chemicals can cause severe harm or death to humans when 

exposed.  Immediately Dangerous to Life and Health (IDLH) values are chemical-specific 

measures of the highest concentration of a chemical that a human can survive for 30 minutes.  This 

report uses time scaling to determine the ten Berge exponents, an intermediary metric in computing 

IDLH values, for eight chemicals based on lethality data collected on rats.  These exponents are 

computed as a function of linear regression parameter estimates and typically range from 0.85 to 

3.5, so credible intervals were determined using a Bayesian approach.  Six of the eight chemicals 

(Acrolein, Ammonia, Carbon disulfide, Carbon monoxide, Epichlorohydrin, and Ethyleneimine) 

had lower bounds below 0.85, while the remaining two chemicals (Hydrogen cyanide and 

Pentaborane) had credible intervals entirely contained within the expected range. 

INTRODUCTION 

Immediately Dangerous to Life and Health (IDLH) values for different chemicals represent the 

highest concentration level that is survivable for humans for at least 30 minutes. These values are 

determined from lethality data collected on animals from different exposure times.  This project 

focuses on the first step of the process, in which the lethality limits are converted to a 30-minute 

exposure time using time-scaling methods.  Two methods are available: Haber’s Rule and ten 

Berge.  Haber’s Rule states that the incidence or severity of a health outcome equals 𝐶 × 𝑡, where 𝐶 

is the concentration and 𝑡 is the time, while ten Berge’s rule states that it equals 𝐶𝑛 × 𝑡, where 𝑛 

is the ten Berge exponent. The value of 𝑛 is chemical specific but is typically assumed to be 

constant across species for a given chemical; values are expected to range between 0.85 and 3.5, 

and a value of 1 reduces to Haber’s Rule.  The primary question of interest for this project is to 

determine the ten Berge exponent for different chemicals using linear regression. 

There were 30 different chemicals provided in the data.  Each observation corresponds to an 

experiment and contains the study reference, species, chemical, and the time and 𝐿𝐶50 obtained 

from the experiment. This analysis focuses on data collected on rats, but other species were 

considered for validation purposes.  All observations with missing 𝐿𝐶50 and time values were 



removed, as well as all observations for chemicals in which all experiments were performed for 

the same time exposure, since time scaling cannot be performed.  After this data-cleaning 

procedure, only 8 of the 30 chemicals had at least three observations from three unique exposure 

times, the minimum amount of data necessary to obtain informative results.  These chemicals are 

summarized in Table 1 below. 

Table 1.  Summary of Data by Chemical. 

Chemical Species Number of Observations Number of Unique Time Exposures 

Acrolein Rat 3 3 

Ammonia Rat 6 5 

Carbon disulfide Rat 4 3 

Carbon monoxide Rat 3 3 

Epichlorohydrin Rat 5 3 

Ethyleneimine Rat 3 3 

Hydrogen cyanide Rat 5 3 

Pentaborane 
Rat 5 5 

Mouse 6 5 

 

METHODOLOGY 

Linear Regression 

Based on the Standard Operating Procedures and the exploratory analysis seen in Figure 1 of the 

Results, the relationship between the log of the time and the log of the 𝐿𝐶50 values appear linear, 

so the data was transformed for analysis.  By taking the natural log of the ten Berge equation, we 

have 𝑙𝑜𝑔(𝐶𝑛 × 𝑡)  =  𝑙𝑜𝑔(𝑘), for a constant 𝑘, which implies that 𝑙𝑜𝑔(𝐶)  =  
𝑙𝑜𝑔(𝑘)

𝑛
−

1

𝑛
𝑙𝑜𝑔(𝑡) by 

the rules of logarithms.  Then, since the relationship between 𝑙𝑜𝑔(𝐶) and 𝑙𝑜𝑔(𝑡) is linear, the 

process can be modeled using simple linear regression for each chemical and each species.  Thus, 

we will fit the following model: 

 𝑙𝑜𝑔(𝐶𝑖)  =  𝛽0 + 𝛽1𝑙𝑜𝑔(𝑡𝑖)  +  𝜖𝑖, 

where 𝑖 is the number of observations for each chemical on the species, 𝐶𝑖 is the 𝐿𝐶50 concentration 

in parts per million (ppm), 𝑡𝑖 is the time in minutes, 𝛽
0 

 is the intercept, and 𝛽
1 

 represents the 



change in the log concentration for each log-minute increase in exposure time.  Based on the ten 

Berge equation, 𝛽
1
 equals −

1

𝑛
. By assumption,  𝜖𝑖~𝑁(0, 𝜎2). 

To estimate 𝛽
1
, and then n, a Bayesian approach was used.  Bayesian analysis is a statistical 

technique that combines prior knowledge with information from the data in order to obtain an 

updated distribution for our value, called the posterior distribution.  Since it is known that n is 

typically between 0.85 and 3.5,  𝛽
1
 is expected to be between -1.1765 and -0.2857. Thus, we 

assume that the prior distribution of 𝛽
1
 is normal, with a mean of -0.7311 and standard deviation 

is 0.2272. The mean and standard deviation were determined so that 𝛽
1
 is between -1.1765 and      

-0.2857 with a probability of 0.95; this implies that 95 percent of the time, the ten Berge exponent 

is between 0.85 and 3.5.  To obtain the posterior distribution, Markov Chain Monte Carlo (MCMC) 

was used.  An estimate of 𝛽
1
, 𝛽1 ,̂ was obtained by taking the mean of this posterior distribution, 

and n was then estimated by taking −
1

 𝛽1̂
.   

Linear models assume linearity and independence in data collection, and constant variance and 

normality in the residuals.  The linearity assumption is generally accepted in this research area and 

will be checked visually.  Independence was assumed, although there may be violations due to 

multiple measurements taken during the same study.  Constant variance and normality were 

checked using the Residuals vs. Fitted plot and Normal Q-Q plots from the regression output. 

Measures of Uncertainty 

Since the ten Berge exponent is computed as a function of 𝛽
1
, several different techniques were 

used and compared in order to measure the uncertainty of the exponent estimates.  These 

approaches, including jackknifing, bootstrapping, and Bayesian methods, are described and 

compared in Appendix A.  Based on a simulation study, the High Density Bayesian Interval (HDI) 

method is recommended due to its high accuracy and small interval widths, and will be used in 

this report.   

The HDI credible intervals were determined from the posterior distribution obtained using the 

Bayesian approach, described above.  This approach finds the interval of the distribution that 

contains 95 percent of the density, while also ensuring that each point in the interval has a higher 

density than any point outside of the interval.  For skewed distributions, this method results in 



narrower intervals than traditional quantile approaches, while still containing the true value with 

95 percent probability. 

Model Validation 

From a biological perspective, ten Berge exponents are expected to be constant across species for 

a given chemical.  Thus, for chemicals having sufficient data on multiple species, the models were 

fit using one species and the intervals for the ten Berge exponents were computed.  Then, the same 

model was fit to data from the same chemical but on other available species, and the corresponding 

ten Berge exponent was compared to the interval from the original model.  If the new estimate 

falls within the original interval, the model structure is deemed to be appropriate. 

RESULTS 

Exploratory Data Analysis 

For the eight chemicals with sufficient data, the 𝐿𝐶50 values were plotted with respect to time; 

without transforming the data, no patterns emerged.  Based on the standard practice of 

transforming the time and 𝐿𝐶50 values using natural log, we recreated the plots by chemical, which 

are shown in Figure 1.  These show that the relationship between the log of the 𝐿𝐶50 values in parts 

per million (ppm) and the log of the time in minutes is relatively linear for all chemicals, although 

the rates of change vary.  

Figure 1: 𝐿𝐶50 Values for Rats over Time by Chemical. 

 



In addition to the above plots for the rat experiments, Pentaborane was the only chemical that had 

at least three observations for another species.  Figure 2 compares the 𝐿𝐶50 values over time 

between the experiments on mice, in red, and rats, in blue.  While the values for rats are uniformly 

larger, the slopes of the lines appear fairly similar between the species; this confirms the belief that 

the relationship between the time and lethality concentration varies across chemicals but is 

consistent across species. 

Figure 2: 𝐿𝐶50 Values for Mice and Rats over Time for Pentaborane.  

 

Linear Regression 

Based on the relationships seen in Figure 1 and the structure of the formula described in the 

Methodology, a log-linear regression model was fit for each chemical with the log 𝐿𝐶50values as 

a function of the log of the time.  Residual vs. Fitted and Normal Q-Q plots are provided in 

Appendix B to check the assumptions.  The fitted models are shown for each of the eight chemicals 

in Figure 3 below. The values of 𝛽
0
 ̂ and 𝛽

1
 ̂used in the fitted models were determined from their 

respective posterior distributions from the Bayesian analysis. 

 

 

 

 

 



Figure 3: Fitted 𝐿𝐶50 Values for Rats over Time by Chemical 

 

Measures of Uncertainty 

The five methods for determining intervals were compared using simulation and the results are 

described in Appendix A.  Although the Bayesian credible intervals were often slightly wider than 

the confidence intervals, they were similar in magnitude and less prone to unreasonable bounds 

caused by anomalies in the small datasets.  In addition, the HDI Bayesian method had the highest 

coverage probabilities and smallest average widths for the sample sizes considered, in general; 

thus, this method was used for the analysis.  Based on this method, Table 2 below shows the 

number of observations, the 𝛽
1
 coefficient estimate from the linear model, the computed ten Berge 

exponent (n), and the 95 percent credible interval for the ten Berge exponent for each of the eight 

chemicals.   

 

 

 

 



Table 2: Log-Linear Regression Output and ten Berge Exponent Estimation. 

Chemical Number of Observations 𝛽
1
 ̂ n  Credible Interval for n 

Acrolein 3 -1.23 1.18 (0.74, 2.17) 

Ammonia 6 -0.97 1.13 (0.83, 1.58) 

Carbon disulfide 4 -1.14 1.03 (0.71, 1.61) 

Carbon monoxide 3 -0.56 1.46 (0.81, 2.41) 

Epichlorohydrin 5 -1.16 1.01 (0.75, 1.51) 

Ethyleneimine 3 -1.01 1.31 (0.75, 2.53) 

Hydrogen cyanide 5 -0.49 1.73 (0.98, 2.88) 

Pentaborane 5 -0.64 1.51 (1.06, 2.13) 

Further, Figure 4 displays the credible interval estimates for the ten Berge exponents for each of 

the eight chemicals, along with their point estimates.  The solid horizontal lines occur at values of 

0.85 and 3.5, framing the generally accepted range, and the dotted lines occur at 1 and 3, marking 

the boundaries of the frequently used range for the exponents. 

Figure 4: Estimates and 95% Credible Intervals for ten Berge Exponents. 

 

 

 



Model Validation 

Pentaborane was the only chemical with sufficient data to perform the analysis on a species other 

than rats, so the same log-linear regression model was fit on the mouse data.  This resulted in a 𝛽
1
 

estimate of -0.66, for an estimated ten Berge exponent of 1.51.  Recall that the estimated exponent 

based on the rat data was 1.51, with a credible interval of (1.06, 2.13).  Thus, the estimated 

exponent based on the mouse data falls within the credible interval, so the model structure appears 

to be appropriate for this analysis, since it provides similar results for data collected on different 

species for the same chemical. 

DISCUSSION 

Acrolein, Carbon monoxide, and Ethyleneimine only have three valid observations, while the other 

five chemicals have at least four.  In each case, there is a negative relationship between the log of 

the time and the log of the 𝐿𝐶50 values, although the magnitude of the slope varies.  This implies 

positive ten Berge exponents, which are shown in Table 2, which range from 1.01 to 1.73.  Further, 

the HDI Bayesian credible intervals for six of the eight chemicals (Acrolein, Ammonia, Carbon 

disulfide, Carbon monoxide, Epichlorohydrin, and Ethyleneimine) contain values below 0.85 but 

above 0.70.  Intervals for Hydrogen cyanide and Pentaborane fall within the generally accepted 

0.85 to 3.5 range, and Pentaborane is the only chemical with a credible interval entirely contained 

within 1 and 3. 

Of the four widest credible intervals, three correspond to the three chemicals with only three 

observations (Acrolein, Carbon monoxide, and Ethyleneimine).  Further, the smallest credible 

interval in this set of chemicals belongs to Ammonia, which had the most data, at six observations 

and five unique time points.  This indicates that as the number of observations increases, the width 

of the 95 percent credible intervals decreases, providing more insight to the true ten Berge 

exponent; from the Simulation study in Appendix A, these credible intervals are still expected to 

contain the true value over 94 percent of the time when three to ten observations are available. 

In terms of model validation, since the estimated ten Berge coefficient for Pentaborane using the 

mouse data was contained within the credible interval generated based on the rat data, this 

modeling strategy seems reasonable and provides consistent results.  However, obtaining more 

data from other species and other chemicals is necessary to generalize this claim. 



An important assumption in linear regression is the independence of observations.  However, since 

some observations can come from the same study, this assumption is not always satisfied.  Future 

work that accounts for the dependence by using random effects in the regression model could be 

performed in order to satisfy this assumption. 

An additional concern in this analysis is the small number of observations for each chemical.  In 

particular, the assumptions of normality and constant variance needed for linear regression cannot 

be thoroughly analyzed with small sample sizes; although there are no obvious violations seen in 

the plots in Appendix B, this analysis relies heavily on these assumptions.  Further, the fewer the 

observations, the wider the credible intervals.  Thus, more observations would allow for narrower 

and more accurate interval estimates for the ten Berge exponents.   
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The regression modeling is based on the linear regression techniques described in Applied Linear 

Statistical Models, 4th Edition by Kutner, et al, and the Bayesian method is based on Bayesian 
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Package” by Jeremy Albright1. 

All data handling, visualization, and analysis were performed using R (64-bit, version 4.0.0).  The 

‘tidyverse’ package (version 1.3.0) was used for data manipulation and plotting, and the ‘boot’ 

package (version 1.3-25) was used to construct the bootstrapped confidence intervals.  The ‘rstan’ 

(version 2.21.2), ‘bayesplot’ (version 1.7.2), and ‘HDInterval’ (version 0.2.2) packages were used 

for the Bayesian analysis and construction of credible intervals.  

 
1 “Understanding Bootstrap Confidence Interval Output.” Methods. 13 Sept. 2019, 

blog.methodsconsultants.com/posts/understanding-bootstrap-confidence-interval-output-from-the-r-boot-package/. 



APPENDIX A: Simulation Study 

In this analysis, intervals for the ten Berge exponents were desired to account for the variability in 

the estimates.  However, since these exponents are computed as a function of the 𝛽
1
 estimate from 

linear regression and the sample sizes are very small, traditional confidence intervals are not 

appropriate.  Alternative approaches include empirically based confidence intervals obtained from 

resampling methods such as bootstrapping or jackknifing.  In addition, since the typical range for 

the exponents is known, a Bayesian approach can produce credible intervals that account for this 

prior knowledge.  Since there is not a consensus in the literature about the best approach for 

obtaining intervals on small data, a simulation study was conducted.  Five methods – jackknife, 

percentile bootstrap, bias-corrected and accelerated (BCa) bootstrap, ETI Bayesian, and HDI 

Bayesian – were compared at various sample sizes and the coverage probabilities were computed.   

Methodology 

These methods include confidence intervals derived from resampling techniques such as 

jackknifing and bootstrapping, as well as credible intervals obtained from a Bayesian approach 

that accounts for prior knowledge about the exponents.  A 95 percent confidence interval is 

constructed so that, out of 100 intervals, 95 contain the true value.  On the other hand, a 95 percent 

credible interval is constructed so that the true value is contained in the interval with 95 percent 

probability.  Although fundamentally different, these two methods are used to measure the 

uncertainty in the parameter estimates. 

Jackknifing is a process of removing one observation from the data, computing the desired statistic, 

and repeating this process to obtain a distribution of possible values.  A 95 percent confidence 

interval can be obtained by determining the 2.5 and 97.5 quantiles from the distribution.  For this 

analysis, one observation was removed from the data, the regression was performed, and 𝑛 was 

computed as a function of the 𝛽
1
 estimate.  This process was then repeated to obtain the full 

distribution of exponent values and the confidence interval was computed. 

A similar technique is bootstrapping, in which the observations are randomly sampled from the 

data with replacement to form new datasets of equal size.  The regression model was fit on these 

samples, and the ten Berge exponents were calculated.  Again, this process was repeated to obtain 



an exhaustive list of values, and a 95 percent confidence interval was determined from the 2.5 and 

97.5 quantiles.  This is referred to as the percentile method of the bootstrapping technique.   

A third approach is an extension of the percentile bootstrap method, called the Bias-Corrected and 

Accelerated bootstrap method, or BCa.  In addition to the traditional bootstrap process, BCa 

confidence intervals account for both the bias and skewness of the resampled distribution by 

accounting for the original estimate from the data.  The exact bias correction and acceleration 

terms are described in Understanding Bootstrap Confidence Interval Output2.  For larger samples, 

the BCa approach is typically preferred3 due to the additional corrections; however, there is no 

consensus in the literature for the correct method when the sample size is this small. 

The final two approaches are based on the Bayesian method: HDI, as described in the Methodology 

of the main report, and Equal Tail Intervals (ETI).  Using the posterior distribution from the 

Bayesian analysis as described in the Methodology section of the main report, the ETI method 

computes credible intervals in a similar manner as the percentile bootstrap method.  The 2.5 and 

97.5 quantiles of the posterior distribution are used as the lower and upper bounds of the 95 percent 

credible interval, so each tail has the same probability.  For a symmetric distribution, the ETI and 

HDI methods are equivalent; however, when the distribution is skewed, the HDI method results in 

slightly narrower intervals, since the tails need not be equal. 

The five approaches were compared by their coverage probability, which is the percentage of the 

simulated intervals that contain the true value out of 1,000 samples, and their average width.   

Higher coverage probabilities indicate more accurate interval estimates, while smaller widths 

provide more insight into the true value of the parameter.  This process was repeated for several 

true values of n, and the method with the highest coverage probability and smallest interval width, 

in general, is recommended and used in this analysis. 

As a basis for the simulation, the first model considered was 

 𝑌𝑖  = 10 − 0.9 × 𝑙𝑜𝑔(𝑥𝑖)  +  𝜖𝑖 

 
2 “Understanding Bootstrap Confidence Interval Output.” Methods. 13 Sept. 2019, 

blog.methodsconsultants.com/posts/understanding-bootstrap-confidence-interval-output-from-the-r-boot-package/.  

3 Wicklin, Rick. “The Bias-Corrected and Accelerated (BCa) Bootstrap Interval.” SAS Blogs, 12 July 2017, 

blogs.sas.com/content/iml/2017/07/12/bootstrap-bca-interval.html.  



where i was the sample size and ranged from 3 to 10, 𝑥𝑖 represented the time in minutes and took 

on unique values from the exposure times in the original data (5, 10, 15, 20, 30, 40, 60, 120, 240, 

360, and 480 minutes), and  𝜖𝑖~𝑁(0, 0.252).  The 𝛽 coefficients and error variance were chosen as 

the average of the estimated coefficients and squared residual standard error, respectively, for the 

eight chemicals used in this analysis.  Since 𝛽
1

= −0.9, the true ten Berge exponent is −
1

−0.9
=

10

9
= 1.11. 

For each sample size 𝑁 from 3 to 10, 𝑁 exposure times were randomly selected from the above 

list without replacement.  The response values were then generated, and the regression model was 

fit.  The ten Berge exponent was computed as  −
1

 𝛽1̂
  and the five methods were run 1,000 times to 

generate a 95 percent confidence interval or credible interval for this value, depending on the type 

of method.  This process was then repeated 1,000 times, and the percentage of the confidence 

intervals that contained the true ten Berge exponent of  
10

9
  was computed as the coverage 

probability.  Although the interpretation of confidence intervals and credible intervals differ, the 

frequentist approach of computing coverage probability is a common technique used to compare 

the methods.  The width of each of the 1,000 intervals was also recorded, and a simple average 

was taken to obtain the average width. 

Results 

The results of this simulation are shown in Table 3 below.  Note that the bootstrap resampling 

technique selects values from the data with replacement; with such small sample sizes, it is 

probable that the same value will be selected for all observations of a given run.  If all values are 

the same, linear regression cannot be performed, so a value of ‘NA’ is recorded, and these values 

are ignored when determining the confidence intervals.  The jackknife method does not have this 

issue, as there are always at least two unique points that can be used to fit the regression model. 

 

 

 

 

 

 

 



Table 3: Coverage Probabilities of Intervals for Various Methods Using n = 1.11. 

Sample 

Size 

Jackknife 

(Percentile) 

Bootstrap 

(Percentile) 
Bootstrap (BCa) Bayesian (ETI) Bayesian (HDI) 

CP AW CP AW CP AW CP AW CP AW 

3 0.673 4.93 0.673 4.94 0.622 4.70 1.000 1.68 1.000 1.41 

4 0.588 0.51 0.919 5.18 0.895 3.80 0.989 1.09 0.990 0.95 

5 0.530 0.20 0.926 0.97 0.934 1.64 0.985 0.76 0.988 0.68 

6 0.514 0.13 0.926 0.52 0.950 0.65 0.968 0.60 0.969 0.56 

7 0.485 0.10 0.910 0.32 0.943 0.34 0.974 0.49 0.970 0.46 

8 0.444 0.08 0.896 0.27 0.929 0.27 0.978 0.43 0.977 0.41 

9 0.445 0.07 0.885 0.24 0.944 0.24 0.963 0.38 0.969 0.36 

10 0.429 0.07 0.900 0.22 0.942 0.22 0.968 0.34 0.969 0.33 

CP: Coverage Probability 

AW: Average Interval Width 

At a sample size of 3, the smallest number of observations considered in this analysis to perform 

linear regression, the three resampling methods performed similarly, but poorly, with only 62.2 

percent of the confidence intervals containing the true ten Berge exponent for the BCa bootstrap 

method, and 67.3 percent containing the true value for both the jackknife and the percentile 

bootstrap methods.  Further, these intervals had an average width over 4, which is wider than the 

typical range.  For both Bayesian approaches, all 1,000 simulated credible intervals contained the 

true value, and the average width was under 2.  Increasing the number of observations to 4, the 

coverage probability for both bootstrap methods increased to around 90 percent, but the average 

widths were still high; the coverage probability for the jackknife approach decreased to just under 

60 percent, but the average width dropped to only 0.51.  The credible interval from the Bayesian 

method also decreased slightly, but nearly 99 percent of intervals still contained the true value, and 

the average widths decreased to around 1.  As more observations were included, the coverage 

probability for the jackknife method and Bayesian method continued to decrease, on average.  The 

coverage probabilities for the jackknife intervals dropped to under 50 percent for a sample size of 

10, while the credible intervals from the Bayesian approach still contained the true exponent over 

95 percent of the time.  The decrease in these coverage probabilities is caused by a decrease in the 

width of the intervals as the sample size increases, with average widths under 0.1 for the jackknife 

approach and just over 0.33 for the Bayesian approaches.  In contrast, the probabilities for the 



bootstrap methods remained relatively stable, near 90 percent, as the sample size increased.  The 

average widths for these intervals also decreased, becoming smaller than the Bayesian intervals at 

sample sizes of 6 or 7. 

In all but two sample sizes considered, the HDI Bayesian method had the highest coverage 

probabilities, surpassed slightly by the ETI Bayesian method at sample sizes of 7 and 8. Further, 

the HDI Bayesian method had smaller average widths than the ETI Bayesian method for all sample 

sizes, as well as the bootstrap methods for small sample sizes.  Thus, the HDI Bayesian approach 

outperformed all three resampling techniques and the ETI Bayesian method, with higher coverage 

probabilities and smaller intervals, indicating more reliable results.   

To analyze the robustness of these intervals for different true values of 𝛽, we ran the same 

simulation as above using 𝛽 = −1.1, which corresponds to a ten Berge exponent of 0.91, close to 

the lower range of expected values.  Table 4 shows the coverage probabilities and average widths 

for the five different methods below. 

Table 4: Coverage Probabilities of Intervals for Various Methods Using n = 0.91. 

Sample 

Size 

Jackknife 

(Percentile) 

Bootstrap 

(Percentile) 
Bootstrap (BCa) Bayesian (ETI) Bayesian (HDI) 

CP AW CP AW CP AW CP AW CP AW 

3 0.655 7.23 0.655 7.23 0.619 7.07 0.951 1.79 1.000 1.47 

4 0.610 0.29 0.934 37.53 0.922 35.57 0.945 1.15 0.986 0.96 

5 0.570 0.12 0.923 0.53 0.924 4.76 0.948 0.75 0.981 0.64 

6 0.508 0.09 0.933 0.29 0.959 0.34 0.933 0.54 0.965 0.48 

7 0.493 0.07 0.903 0.22 0.941 0.23 0.945 0.41 0.975 0.37 

8 0.478 0.06 0.892 0.19 0.937 0.19 0.952 0.34 0.978 0.31 

9 0.465 0.05 0.906 0.17 0.951 0.17 0.942 0.28 0.959 0.27 

10 0.426 0.05 0.895 0.15 0.932 0.15 0.952 0.25 0.969 0.24 

CP: Coverage Probability 

AW: Average Interval Width 

From this table, we see that when the true exponent is 0.91, the coverage probabilities for the 

jackknife and two bootstrap methods are nearly identical to the case when the true n was 1.11. The 

average widths are slightly smaller, with the exception of the smaller sample sizes in which several 



samples produced intervals with extremely wide intervals, greatly influencing the averages. For 

the Bayesian methods, the coverage probabilities decreased for most sample sizes, but remained 

over 95 percent in each case.  As with the resampling techniques, the average widths of these 

intervals also decreased slightly when compared to a true n of 1.11, other than for sample sizes of 

3 and 4, in which the widths increased slightly.  These Bayesian approaches are based on a prior 

distribution where the probability that the ten Berge exponent is less than or equal to 0.91 is near 

5 percent, so the credible intervals are less likely to extend much below this value; this results in 

slightly lower coverage probabilities, in general.  Even then, for sample sizes of three through ten, 

the coverage probabilities are still higher for the Bayesian methods than for the other three 

approaches.  Again, the HDI Bayesian method outperforms the ETI Bayesian method, with slightly 

higher coverage probabilities, and smaller or comparable average widths. 

One final simulation was run, using 𝛽 = −0.5, which corresponds to a ten Berge exponent of 2.  

This is larger than the average ten Berge exponent for the eight chemicals in this study, but still 

below the upper limit of expected values.  The results are displayed in Table 5 below. 

Table 5: Coverage Probabilities of Intervals for Various Methods Using n = 2. 

Sample 

Size 

Jackknife 

(Percentile) 

Bootstrap 

(Percentile) 
Bootstrap (BCa) Bayesian (ETI) Bayesian (HDI) 

CP AW CP AW CP AW CP AW CP AW 

3 0.653 11.42 0.656 11.64 0.597 10.37 1.000 2.43 0.997 2.03 

4 0.597 3.80 0.923 67.40 0.915 15.74 0.983 2.07 0.973 1.85 

5 0.539 0.93 0.910 4.70 0.916 14.95 0.972 1.72 0.956 1.59 

6 0.512 6.99 0.930 2.35 0.945 9.88 0.957 1.55 0.943 1.46 

7 0.483 0.40 0.896 1.51 0.933 1.86 0.967 1.34 0.953 1.29 

8 0.465 0.28 0.892 1.00 0.933 1.02 0.973 1.23 0.960 1.18 

9 0.448 0.27 0.906 0.91 0.943 0.90 0.963 1.11 0.949 1.07 

10 0.425 0.22 0.894 0.75 0.936 0.75 0.961 1.03 0.951 1.00 

CP: Coverage Probability 

AW: Average Interval Width 

Again, each method has similar coverage probabilities as the previous two examples for all sample 

sizes considered; however, in this case, the ETI Bayesian method has larger coverage probabilities 

than all other methods, including the HDI Bayesian method.  Even then, the coverage probabilities 



for the two Bayesian methods differ by less than two percent, and the HDI method still has smaller 

average widths for all sample sizes.   

Based on this simulation, a larger number of the HDI Bayesian credible intervals contain the true 

ten Berge exponent than the other methods when n is 1.11 or 0.91; at a true n of 2, the ETI Bayesian 

credible interval is slightly more accurate, but by less than two percent.  For the HDI approach, 

over 95 percent of the intervals contained the true value for samples with three to ten observations 

when the true exponent was 1.11 and 0.91.  When the true exponent was 2.0, closer to the upper 

bound of the expected range, the coverage probabilities were slightly lower, but still over 94 

percent.  However, in all considered cases, the HDI Bayesian method had the smallest average 

widths for the smallest sample sizes, and outperformed the ETI method for larger sample sizes as 

well.   

Discussion 

Balancing high coverage probabilities and low interval widths, the HDI Bayesian method is the 

superior method to provide insightful and accurate interval estimates for the ten Berge exponent.  It 

outperforms the jackknife and bootstrap methods for all sample sizes in generating intervals that 

measure the uncertainty in the estimates for the ten Berge exponent, and performs similarly to, or 

slightly better than, the ETI method.  This approach is most appropriate and has small, yet accurate, 

credible intervals when the true ten Berge exponent is closer to the center of 0.85 and 3.5, but still 

produces reliable results when exponents are near the edge, especially when more observations are 

available.  

It is interesting to note that for the bootstrapping techniques, having at least four observations 

greatly increases the accuracy of the confidence interval.  Thus, if the bootstrap method is used 

instead of the Bayesian method, it is recommended that at least four observations be used in order 

to obtain accurate interval estimates.  



APPENDIX B: Model Diagnostic Plots 

Figure 5: Model Diagnostic Plots for Ammonia. 

 

Figure 6: Model Diagnostic Plots for Acrolein. 

 

Figure 7: Model Diagnostic Plots for Carbon disulfide. 

 

Figure 8: Model Diagnostic Plots for Carbon monoxide. 

 



Figure 9: Model Diagnostic Plots for Epichlorohydrin. 

 

Figure 10: Model Diagnostic Plots for Ethyleneimine. 

 

Figure 11: Model Diagnostic Plots for Hydrogen cyanide. 

 

Figure 12: Model Diagnostic Plots for Pentaborane. 

 


